An Introduction into the SVAR Methodology: Identification, Interpretation and Limitations of SVAR models

نویسنده

  • Jan Gottschalk
چکیده

This paper aims to provide a non-technical introduction into the SVAR methodology. Particular emphasize is put on the approach to identification in SVAR models, which is compared to identification in simultaneous equation models. It is shown that SVAR models are useful tools to analyze the dynamics of a model by subjecting it to an unexpected shock, whereas simultaneous equation models are better suited for policy simulations. A draw back of the SVAR methodology is that due to the low dimension of typical SVAR models the assumption that the underlying shocks are orthogonal is likely to be fairly restrictive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2/RT/97 - How useful is Structural VAR Analysis for Irish Economnics?

The purpose of this paper is to provide an introduction to the methodology known as Structural Vector Autoregression (SVAR) analysis and to examine its applicability in the context of Irish macroeconomics. The SVAR approach has been developed over the last decade to interpret business cycle fluctuations and to help identify the effects of different economic policies. It is an extension on the t...

متن کامل

Identification and estimation of non-Gaussian structural vector autoregressions

Conventional structural vector autoregressive (SVAR) models with Gaussian errors are not identified, and additional identifying restrictions are typically imposed in applied work. We show that the Gaussian case is an exception in that a SVAR model whose error vector consists of independent non-Gaussian components is, without any additional restrictions, identified and leads to (essentially) uni...

متن کامل

Identification of Structural Vector Autoregressions by Stochastic Volatility

In Structural Vector Autoregressive (SVAR) models, heteroskedasticity can be exploited to identify structural parameters statistically. In this paper, we propose to capture time variation in the second moment of structural shocks by a stochastic volatility (SV) model, assuming that their log variances follow latent AR(1) processes. Estimation is performed by Gaussian Maximum Likelihood and an e...

متن کامل

Identification of SVAR Models by Combining Sign Restrictions With External Instruments

We identify structural vector autoregressive (SVAR) models by combining sign restrictions with information in external instruments and proxy variables. We incorporate the proxy variables by augmenting the SVAR with equations that relate them to the structural shocks. Our modeling framework allows to simultaneously identify different shocks using either sign restrictions or an external instrumen...

متن کامل

General–to–Specific Model Selection Procedures for Structural Vector Autoregressions

Structural vector autoregressive (SVAR) models have emerged as a dominant research strategy in empirical macroeconomics, but suffer from the large number of parameters employed and the resulting estimation uncertainty associated with their impulse responses. In this paper we propose general-to-specific model selection procedures to overcome these limitations. After showing that single-equation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001